Thursday, November 28, 2019

Limitations of the theory of spontaneous localisation


SCEST21: Schrodinger's Cat, and Einstein's Space-time, in the 21st Century

A blogspot for discussing the connection between quantum foundations and quantum gravity

Managed by: Tejinder Pal Singh, Physicist, Tata Institute of Fundamental Research, Mumbai

If you are a professional researcher / student researching on these topics, and would like to post an article here with you as author, you are welcome to do so. Please e-mail your write-up to tpsingh@tifr.res.in and it will be uploaded here.


Keywords: Quantum foundations; Quantum gravity; Schrodinger's cat; Spontaneous collapse theory
____________________________________________

November 28, 2019


Limitations of the theory of spontaneous localisation


Tejinder Singh



The GRWP theory of spontaneous localisation is a falsifiable phenomenological theory. It is designed to provide a dynamical solution to the quantum measurement problem, and to provide a cover for Newtonian mechanics that agrees with quantum mechanics for microscopic systems. The theory is precise enough for experimentalists to be able to test it, and confirm it or rule it out. That is why experimentalists are testing it. For knowing about some of the latest experimental developments on this front, the reader can visit tequantum.eu The most direct way to test GRWP is to verify if the principle of linear superposition holds for large objects. As we saw before, quantum mechanics predicts that a superposition of two position states of an object lasts forever. On the other hand GRWP predict that the superposition lasts for a time T/N, with N being the number of particles in the superposed object. So experimentalists prepare a superposed state, say by using a diffraction grating, and watch if it decays during the time of observation. If it does not, quantum mechanics wins, and one puts a lower bound on T. These are the so-called interferometric tests of (spontaneous) collapse models.

However, in recent years, the so-called non-interferometric tests of collapse models have moved centre-stage. Every time an object in a superposed state undergoes spontaneous collapse to some random location in space, its wave function expands again, and then again it collapses, with the mean life-time between collapses being T/N. These repeated random collapses amount to a random walk, with which is associated a tiny amount of kinetic energy. Spontaneous collapses cause the quantum object to gain a very tiny amount of energy. After cooling the object to extremely low temperature - few milli-Kelvins - and low pressure, one can attempt to look for this random walk, which obviously is in violation of quantum mechanics. Such experiments are currently in an exciting stage, and we might hear of some exciting results in the next few years.

The GRWP theory mathematically amounts to a modification of the Schrodinger equation. One adds a non-Hermitian (random) term to the Hamiltonian of the quantum system. Random because we want the resulting spontaneous collapse to result randomly. Non-Hermitean because we want one of the superposed states to grow exponentially, and the other one to decay exponentially (i.e. destroy superposition). Now, adding such a term implies that evolution no longer preserves norm of the quantum state. However, if the Born probability rule has to be obtained, norm must be preserved. Thus, a new quantum state is defined, by scaling with the norm of the old state. The new state now obeys a non-linear and non-Hermitian  stochastic differential equation, which describes spontaneous collapse theory. The equation has the standard linear and Hermitean part which describes Schrodinger evolution, and in addition it has a non-linear, non-Hermitian part which describes non-unitary evolution, which causes spontaneous localisation and breaks position superposition. It is this equation which the experimentalists are testing. For microscopic objects, the predictions of this equation are extremely close to that of the Schrodinger equation (the non-linear part is negligible), but for macroscopic objects the deviations from quantum mechanics become significant. Here, the predictions of the new equation differ from those of quantum mechanics, and are falsifiable.

A theorist can raise a whole lot of questions and criticisms against the theory of spontaneous collapse, and these need to be addressed and resolved, so that the theory becomes more credible. As it stands, the theory is ad hoc in various ways. What is the origin of the random noise which has been added to the Schrodinger equation? What is the spectrum of this noise? Why should the collapse rate parameter T have this particular value of 1017 sec, and no other value? What causes spontaneous collapse in the first place?  Why should the norm of the state vector be preserved, in spite of the evolution being non-unitary?

Perhaps the most serious criticism against collapse models is that they are non-relativistic. And attempts to  make a  relativistic Lorentz-invariant theory of spontaneous collapse have not been successful. Now, our most successful physical theories are relativistic quantum field theories, which describe the standard model of particle physics, and show excellent agreement with experiments. The Schrodinger equation is readily shown to be the non-relativistic approximation to the Dirac equation, which is relativistic. How then are we adapt the stochastic corrections provided by GRWP to the context of a quantum field theory?

In the opinion of this author, there is a convincing reason why one cannot have a relativistic theory of collapse, without making additional conceptual changes. Recall that spontaneous collapse takes place in position space: the position operator of a particle jumps to a specific eigenvalue, causing spontaneous localisation. Now, in special relativity, we expect position and time to be treated in a symmetric fashion. Hence, in order to make a relativistic theory of spontaneous collapse, we must allow also for spontaneous localisation in time! For that to happen, time will have to be treated as an operator, just like position is an operator in quantum mechanics. In that case, time loses its role as a parameter for defining evolution, and we are then compelled to introduce into relativistic quantum mechanics a new absolute and universal time parameter,  which can be used to define evolution. To summarise, in order to have a relativistic theory of spontaneous localisation, space-time coordinates must be turned into space-time operators in quantum theory, which can undergo spontaneous collapse, and time evolution has to be described by a new absolute time parameter.

There is a lot that has been said and encoded in the previous paragraph, so we now  dwell carefully on the various issues that arise. Firstly, why is it that relativistic spontaneous collapse forces us to treat ordinary time as an operator, whereas no such compulsion arises in standard relativistic quantum field theory? The answer is subtle. So long as spontaneous collapse in position can be ignored [as of course is the case for QFT], spontaneous collapse in time can be ignored as well, and we have our Lorentz invariant quantum field theory. In non-relativistic quantum mechanics, switching on collapse in position space does not compel us to switch on collapse in time space. Because the theory is Galilean invariant; it is not Lorentz invariant, and time is absolute. On the other hand, in the relativistic case, Lorentz invariance compels us to introduce spontaneous collapse in time, soon as we introduce spontaneous collapse in position. In turn, that forces us to introduce an absolute universal time parameter.

It should be mentioned though, that such a (covariant) formulation of relativistic quantum field theory, which treats position as well as time as operators, does exist. It is known as the Horwitz-Stueckelberg theory and the reader can read more about in Lawrence Horwitz’s book `Relativistic Quantum Mechanics’ [Springer, 2015]. The book also discusses the phenomenon of `quantum interference of time’ which will inevitably arise once time has been made an operator. It means that a quantum particle can be at more than one time, at a given universal time. Sone researchers claim that experimental evidence for quantum interference of time already exists. In any case, it is of great importance to perform experiments to look for quantum interference of time. Spatial quantum interference is comparatively much easier to detect, but as and when quantum interference of time is detected, QFT and relativistic quantum mechanics will have to be written in the language of the Horwitz-Stueckelberg theory.

Spontaneous collapse in time may appear to be a bizarre phenomenon, but we have been led to it in a logical inescapable manner. In order to have a cover theory of Newton mechanics which agrees with quantum mechanics for microscopic systems, we are compelled to introduce spontaneous collapse in position. In order to make this collapse theory relativistic, we are compelled to introduce spontaneous collapse in time. Experimentalists ought to look for collapse in time, just as they are testing the GRWP theory.

We can also ask: just as a chair is never found in two places at the same time, why is the chair never found in two times at the same place?! This maybe attributed to rapid spontaneous collapse in time, caused by the chair being made of many many particles.  Spontaneous collapse in space as well as time together define classical events. We expect a quantum particle such as an electron to be at more than one time at the same place (as already hinted at by the path integral formulation of relativistic quantum mechanics) in a very real and physical sense. A quantum particle senses the past as well as the future `simultaneously’. What implications does this have for our understanding of physical reality?

Lastly we mention that the universal absolute time parameter which relativistic collapse theories compel us to introduce, turns out to be rooted in non-commutative geometry, and  in the theory of spontaneous quantum gravity, which we will take up in subsequent posts. But we can already see that the need to introduce space-time coordinate operators already takes us towards quantum gravity, and away from classical space-time geometries. And later we will see how and why spontaneous collapse is an inevitable consequence of spontaneous quantum gravity. The ad hoc nature of the GRWP theory is removed then, because it emerges from an underlying physical theory.

Because spontaneous collapse is essential for localisation of macroscopic objects and resolution of the quantum measurement problem, and because localisation of macroscopic objects is essential for the existence of space-time [Einstein hole argument] and because space-time emerges from quantum gravity, we conclude that the solution of the quantum measurement problem comes from a quantum theory of gravity. Thus one cannot construct a quantum theory of gravity by quantising classical gravity, because doing so does not give a quantum theory of gravity which will dynamically explain absence of superposition of classical space-time geometries. In subsequent posts, we will clearly see how and why Planck length appears in the stochastic part of the non-linear Schrodinger equation which explains spontaneous collapse.



No comments:

Post a Comment

The purpose of this blog is to have a discussion on the connection between quantum foundations and quantum gravity. Students and professionals working on or interested in these subjects are very welcome to participate. Please post only on this or related topics. Off-topic comments will be removed. Obscene, vulgar and abusive posts will be removed.